ON. aspirates became voiceless spirants; [{ptk}ʰ|{ptk}{ptk}ʰ] > [{ɸθx}|{ɸθx}{ɸθx}]
References ✧ PE19/43; PE22/24-25, 28
Order (03700)
| After | 02100 | final [tʰ] became [t] | ᴹ√KHOTH > N. hûd | Ety/KHOTH |
Related
Phonetic Rule Elements
|
|
> |
|
✧ PE19/18 (ph- > ph/f-); PE19/21 (phr- > phr-); PE19/21 (phl- > phl-); PE19/23 (-ph- > -ph-) |
|
|
> |
|
✧ PE19/18 (th- > th/þ-); PE19/21 (thr- > thr-); PE19/21 (thl- > thl-); PE19/23 (-th- > -th-) |
|
|
> |
|
✧ PE19/18 (kh- > kh/χ-); PE19/21 (khr- > khr-); PE19/21 (khl- > khl-); PE19/23 (-khj- > -khj-); PE19/23 (-kh- > -kh-); PE19/23 (-khw- > -khw-) |
|
|
> |
|
|
|
|
> |
|
|
|
|
> |
|
|
|
|
> |
|
|
|
|
> |
|
Phonetic Rule Examples
| ekkʰat- > exxat- | kkʰ > xx | ᴹ✶et-kat > N. echedi | ✧ Ety/KAT |
| ekkʰo > exxo | kkʰ > xx | ᴹ√EK > N. ech | ✧ Ety/EK |
| ekkʰuiwe > exxuiwe | kkʰ > xx | ᴹ✶et-kuiwē > N. echui(w) | ✧ Ety/KUY |
| lokkʰo > loxxo | kkʰ > xx | ᴹ✶lokko > N. lhoch | ✧ Ety/LOKH |
| rokkʰo > roxxo | kkʰ > xx | ᴹ✶rokkō > N. roch | ✧ EtyAC/ROK |
| brektʰa- > brexθa- | ktʰ > xθ | ᴹ✶b’rekta > N. breitho | ✧ Ety/BERÉK |
| brektʰa- > brexθa- | ktʰ > xθ | ᴹ√MERÉK > N. breitha | ✧ EtyAC/MERÉK |
| ektʰe > exθe | ktʰ > xθ | ᴹ√EK > N. aith | ✧ Ety/EK |
| ektʰe > exθe | ktʰ > xθ | ᴹ√EK > N. eith | ✧ EtyAC/EK |
| ektʰele > exθele | ktʰ > xθ | ᴹ✶ektele > N. eithel | ✧ Ety/KEL |
| jaktʰa > jaxθa | ktʰ > xθ | ᴹ✶yakta- > N. iaeth | ✧ Ety/YAK |
| juktʰa- > juxθa- | ktʰ > xθ | ᴹ√YUK > N. iuitho | ✧ Ety/YUK |
| juktʰe > juxθe | ktʰ > xθ | ᴹ√YUK > N. iuith | ✧ Ety/YUK |
| kirjaktʰo > kirjaxθo | ktʰ > xθ | ᴹ✶kirya-k’tō > N. ciriaeth | ✧ PE18/62 |
| kriktʰa- > krixθa- | ktʰ > xθ | ᴹ✶k’rikta > N. critho | ✧ Ety/KIRIK |
| lektʰa- > lexθa- | ktʰ > xθ | ᴹ√LEK > N. lheitho | ✧ Ety/LEK |
| luktʰa- > luxθa- | ktʰ > xθ | ᴹ√LUK > N. lhûtha | ✧ Ety/LUK |
| luktʰe > luxθe | ktʰ > xθ | ᴹ√LUK > N. lhûth | ✧ Ety/LUK |
| maktʰa > maxθa | ktʰ > xθ | ᴹ√MAK > N. maeth | ✧ Ety/MAK |
| maktʰa- > maxθa- | ktʰ > xθ | ᴹ√MAK > N. maetha | ✧ Ety/MAK |
| naktʰa > naxθa | ktʰ > xθ | ᴹ√NAK > N. naeth | ✧ Ety/NAK |
| niktʰe > nixθe | ktʰ > xθ | ON. nikthe > N. níth | ✧ PE22/37 |
| oktʰa > oxθa | ktʰ > xθ | ᴹ✶oktā > N. auth | ✧ Ety/KOT |
| riktʰa- > rixθa- | ktʰ > xθ | ᴹ√RIK(H) > N. rhitho | ✧ Ety/RIK(H) |
| suktʰa- > suxθa- | ktʰ > xθ | ᴹ√SUK > N. sautha- | ✧ Ety/SUK |
| suktʰo > suxθo | ktʰ > xθ | ᴹ√SUK > N. sûth | ✧ Ety/SUK |
| taktʰa- > taxθa- | ktʰ > xθ | ᴹ√TAK > N. taetho | ✧ Ety/TAK |
| tektʰa- > texθa- | ktʰ > xθ | ᴹ√TEK > N. teitho | ✧ Ety/TEK |
| tektʰa > texθa | ktʰ > xθ | ᴹ√TEK > ON. #tektha | ✧ Ety/TEK |
| wektʰe > wexθe | ktʰ > xθ | ᴹ✶weg-tē > N. gweith | ✧ Ety/WEG |
| aɸɸarkʰa > aɸɸarxa | kʰ > x | ᴹ✶apparkā > ON. appharkha | ✧ EtyAC/A |
| erkʰa > erxa | kʰ > x | ᴹ√ERÉK > N. erch | ✧ Ety/ERÉK |
| erkʰa- > erxa- | kʰ > x | ᴹ√ERÉK > N. ercho | ✧ Ety/ERÉK |
| iŋkʰi > iŋxi | kʰ > x | ᴹ√INK > N. inc | ✧ Ety/INK |
| karkʰa > karxa | kʰ > x | ᴹ√KÁRAK > N. carch | ✧ Ety/KARAK |
| kirkʰa > kirxa | kʰ > x | ᴹ√KIRIK > N. cerch | ✧ Ety/KIRIK |
| korkʰa > korxa | kʰ > x | ᴹ√KORKA > N. corch | ✧ Ety/KARKA |
| kʰelkʰa > kʰelxa | kʰ > x | ᴹ√KHELEK > N. helch | ✧ Ety/KHEL |
| laŋkʰo > laŋxo | kʰ > x | ᴹ√LANK > N. lhanc | ✧ Ety/LANK |
| laŋkʰo > laŋxo | kʰ > x | ᴹ√LAK¹ > N. lhanc | ✧ EtyAC/LAK¹ |
| mbalkʰa > mbalxa | kʰ > x | ᴹ√ÑGWAL > N. balch | ✧ Ety/ÑGWAL |
| mbaŋkʰa- > mbaŋxa- | kʰ > x | ᴹ√MBAKH > N. banga | ✧ Ety/MBAKH |
| mbakʰa > mbaxa | kʰ > x | ᴹ✶mbakhā > N. bach | ✧ Ety/MBAKH |
| mbakʰro > mbaxro | kʰ > x | ᴹ√MBAKH > N. bachor | ✧ Ety/MBAKH |
| milkʰa > milxa | kʰ > x | ᴹ√MIL-IK > N. melch | ✧ Ety/MIL-IK |
| narkʰa- > narxa- | kʰ > x | ᴹ√NÁRAK > N. narcha- | ✧ Ety/NÁRAK |
| ndaŋkʰina > ndaŋxina | kʰ > x | ᴹ√NDAK > N. dangen | ✧ Ety/NDAK |
| ndaŋkʰini > ndaŋxini | kʰ > x | ᴹ√NDAK > N. Ndengin | ✧ Ety/NDAK |
| orkʰo > orxo | kʰ > x | ON. orko > N. orch | ✧ Ety/ÓROK |
| orkʰui > orxui | kʰ > x | ON. orkui > N. †yrchy | ✧ EtyAC/ÓROK |
| parkʰa > parxa | kʰ > x | ᴹ✶parkā > ON. parkha | ✧ EtyAC/A |
| pʰliŋkʰe > pʰliŋxe | kʰ > x | ᴹ✶philínkē > N. flinc | ✧ PE21/56 |
| raŋkʰo > raŋxo | kʰ > x | ON. ranko > N. rhanc | ✧ Ety/RAK |
| raŋkʰui > raŋxui | kʰ > x | ON. rankui > N. †rhengy | ✧ Ety/RAK |
| riŋkʰe > riŋxe | kʰ > x | ᴹ✶rinki > N. rhinc | ✧ Ety/RIK(H) |
| sθaŋkʰa > sθaŋxa | kʰ > x | ON. sthanka > N. thanc | ✧ Ety/STAK |
| sulkʰa > sulxa | kʰ > x | ᴹ√SÚLUK > ON. sulkha | ✧ Ety/SÚLUK |
| taŋkʰa > taŋxa | kʰ > x | ᴹ√TAK > N. tanc | ✧ Ety/TAK |
| taŋkʰanθe > taŋxanθe | kʰ > x | ON. tankánte > N. tangant | ✧ PE17/44 |
| taŋkʰata- > taŋxata- | kʰ > x | ᴹ✶tánkā̆ta- > N. tangado | ✧ PE17/44 |
| taŋkʰla > taŋxla | kʰ > x | ᴹ✶tankla > tachl > N. tachol | ✧ Ety/TAK |
| telkʰi > telxi | kʰ > x | ᴹ√TÉLEK > N. tilch | ✧ Ety/TÉLEK |
| telkʰo > telxo | kʰ > x | ᴹ√TÉLEK > N. telch | ✧ Ety/TÉLEK |
| tiŋkʰo > tiŋxo | kʰ > x | ᴹ√TINKŌ > N. tinc | ✧ Ety/TINKŌ |
| tulkʰasse > tulxasse | kʰ > x | ᴹ√TULUK > N. Tolchas | ✧ EtyAC/TULUK |
| kʰad- > xad- | kʰ > x | ᴹ√KHAD > N. hað- | ✧ EtyAC/KHAM |
| kʰaime > xaime | kʰ > x | ᴹ✶khaimē > N. haew | ✧ Ety/KHIM |
| kʰal- > xal- | kʰ > x | ᴹ√KHAL² > N. heli | ✧ EtyAC/KHAL² |
| kʰala > xala | kʰ > x | ᴹ✶khala > N. hâl | ✧ EtyAC/KHAL¹ |
| kʰalatir > xalatir | kʰ > x | ᴹ√KHAL¹ > N. heledir | ✧ Ety/KHAL¹ |
| kʰalatirno > xalatirno | kʰ > x | ᴹ✶khalatirnō̆ > N. heledirn | ✧ Ety/TIR |
| kʰalla > xalla | kʰ > x | ᴹ✶khalnā́ > ON. khalla | ✧ Ety/KHAL² |
| kʰam- > xam- | kʰ > x | ᴹ√KHAM > N. haf- | ✧ EtyAC/KHAM |
| kʰampʰa- > xampʰa- | kʰ > x | ᴹ√KHAP > N. hamma- | ✧ Ety/KHAP |
| kʰampʰata > xampʰata | kʰ > x | ᴹ√KHAP > N. hammad | ✧ Ety/KHAP |
| kʰampʰe > xampʰe | kʰ > x | ᴹ√KHAP > N. hamp | ✧ Ety/KHAP |
| kʰanda > xanda | kʰ > x | ᴹ√KHAD > N. ?hand | ✧ EtyAC/KHAM |
| kʰanda > xanda | kʰ > x | ᴹ√KHAN > hand > N. hann | ✧ Ety/KHAN |
| kʰanja- > xanja- | kʰ > x | ᴹ√KHAN > N. henio | ✧ Ety/KHAN |
| kʰanwa > xanwa | kʰ > x | ᴹ✶hamwa > N. ham/hanw | ✧ EtyAC/KHAM |
| kʰap- > xap- | kʰ > x | ᴹ√KHAP > N. hab- | ✧ Ety/KHAP |
| kʰarata > xarata | kʰ > x | ᴹ√KHYAR > N. harad | ✧ Ety/KHYAR |
| kʰarda > xarda | kʰ > x | ᴹ√KHAR > N. harð | ✧ EtyAC/KHAR |
| kʰarja > xarja | kʰ > x | ᴹ√KHYAR > N. heir | ✧ Ety/KHYAR |
| kʰarmena > xarmena | kʰ > x | ᴹ√KHYAR > N. harfen | ✧ EtyAC/KHYAR |
| kʰarmeni > xarmeni | kʰ > x | ᴹ√KHYAR > N. herfin | ✧ EtyAC/KHYAR |
| kʰarna > xarna | kʰ > x | ᴹ√KHYAR > N. harn | ✧ Ety/KHYAR |
| kʰarna > xarna | kʰ > x | ᴹ√KHAR > N. harn | ✧ EtyAC/KHAR |
| kʰat- > xat- | kʰ > x | ᴹ√KHAT > N. had- | ✧ Ety/KHAT |
| kʰatlattʰa > xatlattʰa | kʰ > x | ᴹ√KHAT > hadlath > N. haglath | ✧ Ety/KHAT |
| kʰatlattʰa > xatlattʰa | kʰ > x | ᴹ√LATH/LAT > hadlath > N. haglath | ✧ Ety/LATH |
| kʰatr > xatr | kʰ > x | ᴹ√KHAT > N. hador | ✧ Ety/KHAT |
| kʰeled > xeled | kʰ > x | Kh. kheled > S. heleð | ✧ PE17/37 |
| kʰeleke > xeleke | kʰ > x | ᴹ√KHELEK > N. heleg | ✧ Ety/KHEL |
| kʰelesa > xelese | kʰ > x | ᴹ✶khyelesē > khelesa > ON. kheleha | ✧ Ety/KHYEL(ES) |
| kʰelle > xelle | kʰ > x | ᴹ√KHEL > N. hell | ✧ Ety/KHEL |
| kʰelxa > xelxa | kʰ > x | ᴹ√KHELEK > N. helch | ✧ Ety/KHEL |
| kʰen > xen | kʰ > x | ᴹ√KHEN-D-E > N. hên | ✧ Ety/KHEN-D-E |
| kʰende > xende | kʰ > x | ᴹ√KHEN-D-E > N. hent/henn | ✧ Ety/KHEN-D-E |
| kʰendi > xendi | kʰ > x | ᴹ√KHEN-D-E > N. hint/hinn | ✧ Ety/KHEN-D-E |
| kʰeni > xeni | kʰ > x | ᴹ√KHEN-D-E > N. hîn | ✧ Ety/KHEN-D-E |
| kʰerbesno > xerbesno | kʰ > x | ᴹ√KHER > N. hervenn | ✧ Ety/KHER |
| kʰerbesse > xerbesse | kʰ > x | ᴹ√KHER > N. hervess | ✧ Ety/KHER |
| kʰēro > xēro | kʰ > x | ᴹ√KHER > ON. khēro | ✧ Ety/KHER |
| kʰerondo > xerondo | kʰ > x | ᴹ√KHER > N. heron | ✧ EtyAC/KHER |
| kʰertʰe > xertʰe | kʰ > x | ᴹ√KHER > N. herth | ✧ Ety/KHER |
| kʰīma > xīma | kʰ > x | ᴹ✶khīmā > N. hiw | ✧ Ety/KHIM |
| kʰimbe > ximbe | kʰ > x | ᴹ√KHIM > N. him | ✧ Ety/KHIM |
| kʰīril > xīril | kʰ > x | ᴹ√KHER > ON. khíril | ✧ Ety/KHER |
| kʰīsislūme > xīsislūme | kʰ > x | ᴹ✶χīsi-slōmē > N. Cílu | ✧ PE21/32 |
| kʰītʰe > xītʰe | kʰ > x | ᴹ✶khīt(h)i > N. hîth | ✧ Ety/KHIS |
| kʰitʰwa > xitʰwa | kʰ > x | ᴹ✶khithwa > N. hethw | ✧ Ety/KHIS |
| kʰitʰwe > xitʰwe | kʰ > x | ᴹ✶khithme > N. hithw | ✧ Ety/KHIS |
| kʰǭda > xǭda | kʰ > x | ᴹ✶khagda > N. hauð | ✧ Ety/KHAG |
| kʰopasse > xopasse | kʰ > x | ᴹ√KHOP > N. hobas | ✧ Ety/KHOP |
| kʰorja- > xorja- | kʰ > x | ᴹ√KHOR > hoerio > N. herio | ✧ Ety/KHOR |
| kʰorna > xorna | kʰ > x | ᴹ√KHOR > N. horn | ✧ Ety/KHOR |
| kʰorθa- > xorθa- | kʰ > x | ᴹ√KHOR > N. hortha- | ✧ Ety/KHOR |
| kʰǭsta > xǭsta | kʰ > x | ᴹ✶khau̯-stā > N. haust | ✧ Ety/KHAW |
| kʰosta > xosta | kʰ > x | ᴹ√KHOTH > N. host | ✧ Ety/KHOTH |
| kʰotse > xotse | kʰ > x | ᴹ✶khotsē > N. hoth | ✧ Ety/KHOTH |
| kʰrasse > xrasse | kʰ > x | ᴹ✶khrassē > N. rhass | ✧ Ety/KHARÁS |
| kʰūgan > xūgan | kʰ > x | ᴹ✶khugan > N. Huan | ✧ Ety/KHUGAN |
| kʰugo > xugo | kʰ > x | ᴹ√KHUG > N. hû | ✧ Ety/KHUGAN |
| kʰūgore > xūgore | kʰ > x | ᴹ✶Khōgore > N. Huor | ✧ Ety/GOR |
| kʰūn > xūn | kʰ > x | ᴹ√KHŌ-N > N. hûn | ✧ Ety/KHŌ-N |
| kʰūpa > xūpa | kʰ > x | ᴹ√KHOP > N. hûb | ✧ Ety/KHOP |
| kʰūre > xūre | kʰ > x | ᴹ√KHOR > N. hûr | ✧ Ety/KHOR |
| kʰūt > xūt | kʰ > x | ᴹ√KHOTH > N. hûd | ✧ Ety/KHOTH |
| appʰarkʰa > aɸɸarkʰa | ppʰ > ɸɸ | ᴹ✶apparkā > ON. appharkha | ✧ EtyAC/A |
| eppʰele > eɸɸele | ppʰ > ɸɸ | ᴹ✶Et-pele > eppele > N. Ephel | ✧ WR/137 |
| alpʰa > alɸa | pʰ > ɸ | ᴹ✶alk-wā > ON. alpha | ✧ Ety/ÁLAK |
| gampʰa > gamɸa | pʰ > ɸ | ᴹ√GAP > N. gamp | ✧ Ety/GAP |
| gampʰasse > gamɸasse | pʰ > ɸ | ON. gampasse > N. gammas | ✧ EtyAC/GAP |
| inpʰantʰa > inɸantʰa | pʰ > ɸ | ON. inpanta > in-fant > N. ifant | ✧ Ety/YEN |
| kalpʰa > kalɸa | pʰ > ɸ | ᴹ√KALPA > N. calf | ✧ Ety/KALPA |
| limpʰe > limɸe | pʰ > ɸ | ᴹ√LINKWI > N. lhimp | ✧ Ety/LINKWI |
| nimpʰe > nimɸe | pʰ > ɸ | ᴹ√NIK-W > N. nimp | ✧ Ety/NIK-W |
| nimpʰirete > nimɸirete | pʰ > ɸ | ᴹ√NIK-W > N. nifred | ✧ Ety/NIK-W |
| nimpʰit- > nimɸit- | pʰ > ɸ | ᴹ√NIK-W > N. nimmid | ✧ Ety/NIK-W |
| salpʰa > salɸa | pʰ > ɸ | ᴹ√SÁLAP > ON. salpha | ✧ Ety/SÁLAP |
| silpʰion > silɸion | pʰ > ɸ | ᴹ√SÍLIP > N. **Silfion | ✧ Ety/SIL |
| tumpʰo > tumɸo | pʰ > ɸ | ᴹ√TUMPU > N. tump | ✧ Ety/TUMPU |
| xampʰa- > xamɸa- | pʰ > ɸ | ᴹ√KHAP > N. hamma- | ✧ Ety/KHAP |
| xampʰata > xamɸata | pʰ > ɸ | ᴹ√KHAP > N. hammad | ✧ Ety/KHAP |
| xampʰe > xamɸe | pʰ > ɸ | ᴹ√KHAP > N. hamp | ✧ Ety/KHAP |
| pʰaina > ɸaina | pʰ > ɸ | ᴹ√PHAY > N. foen | ✧ Ety/PHAY |
| pʰaire > ɸaire | pʰ > ɸ | ᴹ√PHAY > ON. phaire | ✧ Ety/PHAY |
| pʰajanǭr > ɸajanǭr | pʰ > ɸ | ᴹ✶Phay-anāro > ON. Phayanṓr | ✧ Ety/PHAY |
| pʰalasse > ɸalasse | pʰ > ɸ | ᴹ√PHAL/PHÁLAS > N. falas | ✧ Ety/PHAL |
| pʰalassi > ɸalassi | pʰ > ɸ | ᴹ√PHAL/PHÁLAS > N. feles | ✧ Ety/PHAL |
| pʰalma > ɸalma | pʰ > ɸ | ᴹ√PHAL/PHÁLAS > N. falf | ✧ Ety/PHAL |
| pʰalsa- > ɸalsa- | pʰ > ɸ | ᴹ√PHAL/PHÁLAS > ON. phalsóbe | ✧ Ety/PHAL |
| pʰara- > ɸara- | pʰ > ɸ | ᴹ√PHAR² > ON. pharóbe | ✧ EtyAC/PHAR² |
| pʰaradīr > ɸaradīr | pʰ > ɸ | ᴹ√PHAR² > N. feredir | ✧ EtyAC/PHAR² |
| pʰarasse > ɸarasse | pʰ > ɸ | ᴹ√PHAR² > ON. pharasse | ✧ EtyAC/PHAR² |
| pʰaren > ɸaren | pʰ > ɸ | ᴹ√PHAR > N. far | ✧ Ety/PHAR |
| pʰarja- > ɸarja- | pʰ > ɸ | ᴹ√PHAR > N. feira- | ✧ EtyAC/PHAR |
| pʰarna > ɸarna | pʰ > ɸ | ᴹ√PHAR > N. farn | ✧ Ety/PHAR |
| pʰasta > ɸasta | pʰ > ɸ | ᴹ√PHAS > ON. phasta | ✧ Ety/PHAS |
| pʰeleke > ɸeleke | pʰ > ɸ | ᴹ√PHELÉK > N. feleg | ✧ EtyAC/PHELÉK |
| pʰelga > ɸelga | pʰ > ɸ | ON. phelga > N. fela | ✧ Ety/PHÉLEG |
| pʰelga > ɸelga | pʰ > ɸ | ᴹ√PHÉLEG > ON. phelga | ✧ Ety/PHÉLEG |
| pʰelgi > ɸelgi | pʰ > ɸ | ON. phelga > N. fili | ✧ Ety/PHÉLEG |
| pʰenda > ɸenda | pʰ > ɸ | ᴹ√PHEN > ON. phenda | ✧ Ety/PHEN |
| pʰeren > ɸeren | pʰ > ɸ | ᴹ✶phéren > ON. pheren | ✧ Ety/BERÉTH |
| pʰerna > ɸerna | pʰ > ɸ | ᴹ√PHÉREN > ON. pherna | ✧ Ety/PHER |
| pʰilike > ɸilike | pʰ > ɸ | ᴹ√PHILIK > N. filig | ✧ Ety/PHILIK |
| pʰinde > ɸinde | pʰ > ɸ | ᴹ√PHIN > ON. phinde | ✧ Ety/PHIN |
| pʰindekǭno > ɸindekǭno | pʰ > ɸ | ᴹ✶Findekāno > N. Fingon | ✧ Ety/PHIN |
| pʰindarǭto > ɸinderǭto | pʰ > ɸ | ᴹ✶Phinde-rauto > N. Finrod | ✧ Ety/PHIN |
| pʰinja > ɸinja | pʰ > ɸ | ᴹ√PHIN > ON. phinya | ✧ Ety/PHIN |
| pʰinwe > ɸinwe | pʰ > ɸ | ON. Phinwe > N. **Finw | ✧ Ety/PHIN |
| pʰirja > ɸirja | pʰ > ɸ | ᴹ√PHIR > N. feir | ✧ Ety/PHIR |
| pʰirji > ɸirji | pʰ > ɸ | ᴹ√PHIR > N. fîr | ✧ Ety/PHIR |
| pʰirna > ɸirna | pʰ > ɸ | ᴹ√PHIR > N. fern | ✧ Ety/PHIR |
| pʰliŋxe > ɸliŋxe | pʰ > ɸ | ᴹ✶philínkē > N. flinc | ✧ PE21/56 |
| pʰǭka > ɸǭka | pʰ > ɸ | ᴹ√PHAU̯ > ON. phauka | ✧ Ety/PHAU |
| pʰorja > ɸorja | pʰ > ɸ | ᴹ√PHOR > fœir > N. feir | ✧ Ety/PHOR |
| pʰormena > ɸormena | pʰ > ɸ | ᴹ√PHOR > N. forven | ✧ Ety/PHOR |
| pʰormenja > ɸormenja | pʰ > ɸ | ᴹ√PHOR > N. fervein | ✧ EtyAC/PHOR |
| pʰorna > ɸorna | pʰ > ɸ | ᴹ√PHOR > N. forn | ✧ Ety/PHOR |
| pʰorote > ɸorote | pʰ > ɸ | ᴹ✶phoroti > N. forod | ✧ Ety/PHOR |
| pʰuia- > ɸuia- | pʰ > ɸ | ᴹ√PHEW > ON. phuióbe | ✧ Ety/PHEW |
| pʰuine > ɸuine | pʰ > ɸ | ᴹ✶phuine > N. fuin | ✧ Ety/PHUY |
| attʰ- > aθθ- | ttʰ > θθ | ᴹ√AT(AT) > N. ath- | ✧ Ety/RAT |
| -attʰa > -aθθa | ttʰ > θθ | ᴹ✶-atta > N. -ath | ✧ PE21/57 |
| battʰa- > baθθa- | ttʰ > θθ | ᴹ✶battā́ > ON. batthṓ | ✧ Ety/BAT |
| dalattʰe > dalaθθe | ttʰ > θθ | ᴹ√DAL > N. dalath | ✧ Ety/DAL |
| dattʰa > daθθa | ttʰ > θθ | ᴹ✶dattā > N. dath | ✧ Ety/DAT |
| gattʰa > gaθθa | ttʰ > θθ | ᴹ✶gattā > N. gath | ✧ Ety/GAT(H) |
| grottʰo > groθθo | ttʰ > θθ | ᴹ√ROT > N. groth | ✧ EtyAC/ROT |
| jattʰa > jaθθa | ttʰ > θθ | ᴹ✶yatta > N. iath | ✧ EtyAC/YAT |
| kelettʰe > keleθθe | ttʰ > θθ | ᴹ√KEL > N. celeth | ✧ EtyAC/KEL |
| lattʰa > laθθa | ttʰ > θθ | ᴹ√LATH/LAT > N. lhath | ✧ Ety/LATH |
| mattʰa- > maθθa- | ttʰ > θθ | ᴹ✶mahtā́ > ON. matthṓ-be | ✧ Ety/MAƷ |
| mberettʰe > mbereθθe | ttʰ > θθ | ᴹ√MBER > N. bereth | ✧ Ety/MBER |
| mbottʰo > mboθθo | ttʰ > θθ | ᴹ√MBOTH > N. both | ✧ Ety/MBOTH |
| melettʰe > meleθθe | ttʰ > θθ | ᴹ√MEL > N. meleth | ✧ Ety/MEL |
| merettʰe > mereθθe | ttʰ > θθ | ᴹ√MER > N. mereth | ✧ Ety/MBER |
| mettʰa > meθθa | ttʰ > θθ | ᴹ✶metta > N. meth | ✧ Ety/MET |
| nanittʰa > naniθθa | ttʰ > θθ | ᴹ√NAN > N. naneth | ✧ Ety/NAN |
| nettʰa > neθθa | ttʰ > θθ | ᴹ√NETH > N. Neth | ✧ Ety/Nι |
| palattʰe > palaθθe | ttʰ > θθ | ᴹ√PAL > N. palath | ✧ Ety/PAL |
| pattʰa > paθθa | ttʰ > θθ | ᴹ✶pathnā > ON. pattha | ✧ Ety/PATH |
| pettʰa > peθθa | ttʰ > θθ | ᴹ✶kwetta > N. peth | ✧ Ety/KWET |
| rattʰa > raθθa | ttʰ > θθ | ᴹ✶rattā̆ > ON. rattha | ✧ Ety/RAT |
| rottʰo > roθθo | ttʰ > θθ | ᴹ√ROT > N. roth | ✧ EtyAC/ROT |
| settʰa > seθθa | ttʰ > θθ | ᴹ✶settā > N. seth | ✧ EtyAC/SET |
| skalattʰa > skalaθθa | ttʰ > θθ | ᴹ√SKAL > N. ?halath | ✧ EtyAC/SKEL |
| skalattʰi > skalaθθi | ttʰ > θθ | ᴹ√SKAL > N. heleth | ✧ EtyAC/SKEL |
| skelattʰa > skelaθθa | ttʰ > θθ | ᴹ√SKEL > N. helath | ✧ EtyAC/SKEL |
| skelettʰe > skeleθθe | ttʰ > θθ | ᴹ√SKEL > N. heleth | ✧ Ety/SKEL |
| tittʰina > tiθθina | ttʰ > θθ | ᴹ√TIT > N. tithen | ✧ Ety/TIT |
| tittʰini > tiθθini | ttʰ > θθ | ᴹ√TIT > N. tithin | ✧ Ety/TIT |
| wanattʰa > wanaθθa | ttʰ > θθ | ᴹ√WAN > N. gwanath | ✧ Ety/WAN |
| wattʰa- > waθθa- | ttʰ > θθ | ON. wattóbe > N. gwatho | ✧ Ety/WAƷ |
| wattʰe > waθθe | ttʰ > θθ | ON. watte > N. gwath | ✧ Ety/WAƷ |
| wilittʰe > wiliθθe | ttʰ > θθ | ᴹ√WIL > N. gwilith | ✧ Ety/WIL |
| wilwilittʰa > wilwiliθθa | ttʰ > θθ | ᴹ√WIL > N. gwilwileth | ✧ Ety/WIL |
| xatlattʰa > xatlaθθa | ttʰ > θθ | ᴹ√KHAT > hadlath > N. haglath | ✧ Ety/KHAT |
| xatlattʰa > xatlaθθa | ttʰ > θθ | ᴹ√LATH/LAT > hadlath > N. haglath | ✧ Ety/LATH |
| ambartʰa > ambarθa | tʰ > θ | ᴹ√MBARAT > N. ammarth | ✧ Ety/MBARAT |
| ambatʰ > ambaθ | tʰ > θ | ᴹ√MBAT(H) > ambath > N. amath | ✧ EtyAC/MBAT(H) |
| antʰa > anθa | tʰ > θ | ᴹ√ANA¹ > N. ant | ✧ Ety/ANA¹ |
| antʰa- > anθa- | tʰ > θ | ᴹ√ANA¹ > N. anno | ✧ Ety/ANA¹ |
| arjantʰe > arjanθe | tʰ > θ | ᴹ√ANA¹ > N. Eriant | ✧ Ety/AR¹ |
| atlantʰa- > atlanθa- | tʰ > θ | ᴹ√TALÁT > N. atlanno | ✧ Ety/TALÁT |
| atlantʰa > atlanθa | tʰ > θ | ᴹ√TALÁT > N. atlant | ✧ Ety/TALÁT |
| awartʰa > awarθa | tʰ > θ | ᴹ√WAR > N. awarth | ✧ Ety/WAR |
| awartʰa- > awarθa- | tʰ > θ | ON. awarta > N. awartha | ✧ Ety/WAR |
| baltʰil > balθil | tʰ > θ | ON. Balthil > N. Belthil | ✧ Ety/BAL |
| baratʰi > baraθi | tʰ > θ | ᴹ√BARATH > N. bereth | ✧ Ety/BARATH |
| bertʰa > berθa | tʰ > θ | ᴹ√BER > ON. bértha- | ✧ Ety/BER |
| bretʰa > breθa | tʰ > θ | ᴹ√BERÉTH > N. breth | ✧ EtyAC/NEL |
| bretʰel > breθele | tʰ > θ | ᴹ√BERÉTH > N. brethel | ✧ Ety/NEL |
| bretʰeli > breθeli | tʰ > θ | ᴹ√BERÉTH > N. brethil | ✧ Ety/NEL |
| dantʰ > danθ | tʰ > θ | ᴹ√DANT > N. dant- | ✧ Ety/DAT |
| dartʰa- > darθa- | tʰ > θ | ᴹ√DAR > N. dartha | ✧ Ety/DAR |
| dultʰa- > dulθa- | tʰ > θ | ᴹ√DUL > N. doltha | ✧ Ety/DUL |
| entʰrende > enθrende | tʰ > θ | ᴹ✶Ēntrende > N. Ethrenn | ✧ EtyAC/EN |
| gartʰa > garθa | tʰ > θ | ᴹ√GARAT > N. garth | ✧ Ety/ƷAR|GARAT |
| gartʰa- > garθa- | tʰ > θ | ᴹ√GARAT > N. gartho | ✧ EtyAC/GAR |
| gotʰombǭko > goθombǭko | tʰ > θ | ᴹ✶Gothombauk- > N. Gothmog | ✧ Ety/MBAW |
| gotʰorǭko > goθorǭko | tʰ > θ | ᴹ✶Gothorauk- > N. Gothrog | ✧ EtyAC/MBAW |
| inɸantʰa > inɸanθa | tʰ > θ | ON. inpanta > in-fant > N. ifant | ✧ Ety/YEN |
| itʰil > iθil | tʰ > θ | ᴹ✶ITHIL > N. Ithil | ✧ Ety/I² |
| itʰil > iθil | tʰ > θ | ᴹ√THIL > N. †Ithil | ✧ Ety/SIL |
| itʰil > iθil | tʰ > θ | ᴹ√THIL > N. †Ithil | ✧ Ety/THIL |
| itʰīl > iθīl | tʰ > θ | ᴹ✶Ithīl > N. Ithil | ✧ SD/306 |
| jantʰa > janθa | tʰ > θ | ᴹ✶yantā > N. iant | ✧ Ety/YAT |
| kantʰa > kanθa | tʰ > θ | ᴹ√KAT > N. cant | ✧ Ety/KAT |
| kartʰa > karθa | tʰ > θ | ᴹ√KAR > N. carth | ✧ Ety/KAR |
| kentʰano > kenθano | tʰ > θ | ᴹ√TAN > N. cennan | ✧ Ety/TAN |
| kentʰano > kenθano | tʰ > θ | ᴹ√KEM > N. cennan | ✧ EtyAC/KEM |
| kirtʰan > kirθan | tʰ > θ | ᴹ√TAN > ON. Certhan | ✧ Ety/TAN |
| kʰortʰa- > kʰorθa- | tʰ > θ | ᴹ√KHOR > N. hortha- | ✧ Ety/KHOR |
| lantʰa > lanθa | tʰ > θ | ᴹ√LAT > N. lhant | ✧ Ety/LAT |
| lotʰo > loθo | tʰ > θ | ᴹ√LOTH > N. lhoth | ✧ Ety/LOT(H) |
| luntʰe > lunθe | tʰ > θ | ᴹ√LUT > N. lhunt | ✧ Ety/LUT |
| mbartʰa- > mbarθa- | tʰ > θ | ᴹ√MBARAT > N. bartho | ✧ Ety/MBARAT |
| mentʰe > menθe | tʰ > θ | ᴹ√MET > N. ment | ✧ Ety/MET |
| mintʰe > minθe | tʰ > θ | ᴹ√MIT > N. mint | ✧ EtyAC/MIT |
| mitʰe > miθe | tʰ > θ | ᴹ√MITH > N. mith | ✧ Ety/MITH |
| mitʰe > miθe | tʰ > θ | ᴹ√MITH > N. mith | ✧ Ety/MITH |
| nartʰa- > narθa- | tʰ > θ | ᴹ√NARTA > N. nartho | ✧ EtyAC/NARTA |
| nartʰasse > narθasse | tʰ > θ | ᴹ√NARTA > N. Narthas | ✧ EtyAC/NARTA |
| ndanitʰǭro > ndaniθǭro | tʰ > θ | ᴹ✶ndani-thārō > N. Dainthor | ✧ LR/188 |
| ndoltʰi > ndolθi | tʰ > θ | ᴹ√NDOL > N. dylt | ✧ Ety/NDOL |
| ndoltʰo > ndolθo | tʰ > θ | ᴹ√NDOL > N. dolt | ✧ Ety/NDOL |
| ndortʰa- > ndorθa- | tʰ > θ | ᴹ√NDOR > N. dortho- | ✧ Ety/NDOR |
| netʰra > neθra | tʰ > θ | ᴹ✶nethra > N. neth | ✧ Ety/NETH |
| ŋgorotʰo > ŋgoroθo | tʰ > θ | ᴹ√ÑGÓROTH > N. goroth | ✧ Ety/ÑGOROTH |
| ŋgurtʰu > ŋgurθu | tʰ > θ | ON. ngurtu > N. guruth | ✧ Ety/ÑGUR |
| nītʰe > nīθe | tʰ > θ | ᴹ✶nēthē > N. nîth | ✧ Ety/NETH |
| norotʰa > noroθa | tʰ > θ | ᴹ√NOROTH > N. Noroth | ✧ EtyAC/NOROTH |
| noutʰa- > nouθa- | tʰ > θ | ᴹ√NOWO > N. nautha- | ✧ Ety/NOWO |
| noutʰe > nouθe | tʰ > θ | ᴹ√NOWO > N. nauth | ✧ Ety/NOWO |
| ontʰa- > onθa- | tʰ > θ | ᴹ√ONO > N. #onna | ✧ Ety/ONO |
| ortʰa- > orθa- | tʰ > θ | ON. ortóbe > N. ortho | ✧ Ety/ORO |
| ortʰel- > orθel- | tʰ > θ | ᴹ√TEL > N. ortheli | ✧ Ety/TEL |
| ortʰur- > orθur- | tʰ > θ | ᴹ✶or-tur- > N. orthor | ✧ Ety/TUR |
| pantʰa- > panθa- | tʰ > θ | ᴹ√KWAT > N. pannod | ✧ Ety/KWAT |
| pantʰa > panθa | tʰ > θ | ON. panta > N. pant | ✧ Ety/KWAT |
| pantʰjīnare > panθjīnare | tʰ > θ | ᴹ√KWAT > N. penninar | ✧ Ety/YEN |
| pantʰra- > panθra- | tʰ > θ | ᴹ√KWAT > N. pathro | ✧ Ety/KWAT |
| partʰa- > parθa- | tʰ > θ | ᴹ√PAR > ON. parthóbi | ✧ Ety/PAR |
| patʰwa > paθwa | tʰ > θ | ᴹ✶pathmā > ON. pathwa | ✧ Ety/PATH |
| peltʰaksa > pelθaksa | tʰ > θ | ᴹ✶peltakse > ON. pelthaksa | ✧ Ety/PEL |
| pentʰa > penθa | tʰ > θ | ᴹ✶kwentā > N. pent | ✧ Ety/KWET |
| pentʰasse > penθasse | tʰ > θ | ᴹ√KWET > N. pennas | ✧ Ety/KWET |
| pentʰro > penθro | tʰ > θ | ᴹ✶kwentrō > N. pethron | ✧ Ety/KWET |
| rantʰa > ranθa | tʰ > θ | ᴹ√RAT > N. rant | ✧ Ety/RAT |
| skeltʰa- > skelθa- | tʰ > θ | ᴹ✶skelta- > N. heltha | ✧ Ety/SKEL |
| smaltʰa > smalθa | tʰ > θ | ᴹ✶smaltā > ON. maltha | ✧ EtyAC/SMAL |
| spantʰur > spanθur | tʰ > θ | ᴹ✶Spanturo > N. Fennyr/Fennuir | ✧ Ety/SPAN |
| stintʰasse > stinθasse | tʰ > θ | ᴹ√STINTĀ > N. thinnas | ✧ Ety/STINTĀ |
| sθintʰa > sθinθa | tʰ > θ | ON. sthinta > N. thent | ✧ Ety/STINTĀ |
| sxaltʰa- > sxalθa- | tʰ > θ | ON. skhalta- > N. haltha | ✧ EtyAC/SKEL |
| taltʰa > talθa | tʰ > θ | ᴹ√TALÁT > N. talt | ✧ Ety/TALÁT |
| taŋkʰantʰe > taŋkʰanθe | tʰ > θ | ON. tankánte > N. tangant | ✧ PE17/44 |
| tatʰre > taθre | tʰ > θ | ᴹ✶tatharē > tathrē > N. tathor | ✧ Ety/TATHAR |
| tintʰa- > tinθa- | tʰ > θ | ᴹ√TIN > N. tinno | ✧ Ety/TIN |
| tintʰe > tinθe | tʰ > θ | ᴹ√TIN > N. tint | ✧ Ety/TIN |
| tolotʰo > toloθo | tʰ > θ | ᴹ√TOL¹-OTH/OT > N. toloth | ✧ Ety/TOL¹-OTH/OT |
| tultʰa- > tulθa- | tʰ > θ | ᴹ✶tultā- > N. toltho | ✧ Ety/TUL |
| turtʰa- > turθa- | tʰ > θ | ᴹ√TUR > N. tortho | ✧ Ety/TUR |
| tʰar- > θar- | tʰ > θ | ᴹ√THAR > N. Thar- | ✧ Ety/THAR |
| θeles > θele | tʰ > θ | ᴹ√THELES > ON. thele | ✧ Ety/THEL |
| tʰelesi > θelesi | tʰ > θ | ᴹ✶thelesi > ON. thelehi | ✧ Ety/THEL |
| tʰīa- > θīa- | tʰ > θ | ᴹ√THĒ > N. thio | ✧ Ety/THĒ |
| tʰilja- > θilja- | tʰ > θ | ᴹ√THIL > N. thilio | ✧ Ety/THIL |
| tʰinde > θinde | tʰ > θ | ᴹ✶thindi > thind > N. thinn | ✧ Ety/THIN |
| tʰinje > θinje | tʰ > θ | ᴹ√THIN > N. †thîn | ✧ Ety/THIN |
| tʰinθa > θinθa | tʰ > θ | ᴹ√THIN > ON. thintha | ✧ Ety/THIN |
| tʰīre > θīre | tʰ > θ | ᴹ✶thērē > N. thîr | ✧ Ety/THĒ |
| tʰondo > θondo | tʰ > θ | ᴹ√SON > N. thond | ✧ EtyAC/SON |
| tʰora > θora | tʰ > θ | ᴹ√THOR > N. thôr | ✧ Ety/THOR |
| tʰǭrena > θǭrena | tʰ > θ | ᴹ✶tháurēnā > N. thoren | ✧ Ety/THUR |
| tʰoron > θoron | tʰ > θ | ᴹ√THÓRON > N. thôr | ✧ Ety/THOR |
| tʰoron > θoron | tʰ > θ | ᴹ√THÓRON > ON. thoronen | ✧ Ety/THOR |
| tʰoroni > θoroni | tʰ > θ | ᴹ√THÓRON > N. therein | ✧ Ety/THOR |
| tʰoroto > θoroto | tʰ > θ | ᴹ√THOR > N. thôrod | ✧ Ety/THOR |
| tʰǭsa > θǭsa | tʰ > θ | ᴹ✶thausā > N. thaw | ✧ Ety/THUS |
| tʰuia- > θuia- | tʰ > θ | ᴹ√THŪ > N. thuio | ✧ Ety/THŪ |
| tʰūle > θūle | tʰ > θ | ᴹ√THŪ > N. thūl | ✧ Ety/THŪ |
| tʰura- > θura- | tʰ > θ | ᴹ√THUR > N. thoro- | ✧ Ety/THUR |
| tʰūse > θūse | tʰ > θ | ᴹ√THUS > N. thû | ✧ Ety/THUS |
| tʰusta > θusta | tʰ > θ | ᴹ√THUS > N. thost | ✧ EtyAC/THUS |
| tʰusta- > θusta- | tʰ > θ | ᴹ√THUS > N. thosto | ✧ EtyAC/THUS |
| tʰintʰa > tʰinθa | tʰ > θ | ᴹ√THIN > ON. thintha | ✧ Ety/THIN |
| wantʰa- > wanθa- | tʰ > θ | ᴹ✶wanta- > N. gwanno | ✧ Ety/WAN |
| wartʰa > warθa | tʰ > θ | ᴹ√WAR > N. gwarth | ✧ Ety/WAR |
| watʰa > waθa | tʰ > θ | ᴹ√WATH > ON. watha | ✧ Ety/WATH |
| wintʰa- > winθa- | tʰ > θ | ᴹ✶wínta- > ON. wintha | ✧ Ety/WIN |
| xertʰe > xerθe | tʰ > θ | ᴹ√KHER > N. herth | ✧ Ety/KHER |
| xītʰe > xīθe | tʰ > θ | ᴹ✶khīt(h)i > N. hîth | ✧ Ety/KHIS |
| xitʰwa > xiθwa | tʰ > θ | ᴹ✶khithwa > N. hethw | ✧ Ety/KHIS |
| xitʰwe > xiθwe | tʰ > θ | ᴹ✶khithme > N. hithw | ✧ Ety/KHIS |